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ABSTRACT
A simple one-dimensional theory is given for the steady, compressible,

adiabatic flow of a perfect gas through a porous plate. The Dupuit-Forchheimer

relation, valid for incompressible flow, is replaced by an isentropic com-

pression when the gas enters the plate and a non-isentropic sudden enlarge-

ment process when it exits. A generalized form of Darcy's equation is

used that iki applicable to adiabatic flow. It retains the convective term,

which is necessary if the flow is compressible. An important consequence

of this studir is that the Mach number at the downstream surface may be

much smallr than unity, even when the flow through the plate is choked.

As the presgiure ratio across the plate decreases, the flow remains choked,

but the downstream Mach number increases. In fact, this Mach number will

be greater than unity for a sufficiently small pressure ratio, in which case

the downstream flow is supersonic. Thus, a wide range of downstream

Mach numbers trom subsonic to supersonic is possible, even though the

flow is choked. For incompressible flow, the volumetric flow rate varies

linearly with the pressure differentiai across the plate. The equivalent

compressible relation is shown to consist of a plot of upstream Mach number

versus the pre.ssure ratio across the plate The incompressible result can

also be shown on this plot; it differs from the compressible one, except

when the plate is thick.
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NOMENCLATURE

b, drag coefficient;

BO~i Darcy's constant;

d, average pore diameter;

fit fu~ctions definedby Eqs. (18) and (20);

F(M ) functic.i defined byEq. (14);

Gi(MZ), Mach number functions;

h, enthalpy;

L, porous plate thickness;

M, Mach number;

ps pressure;

R, gas constant;

R d' Reynolds number:

5, entropy;

, temperature;

U, velocity;

x, distance in the direction of flow;

X, drag;

P, porosity;

Y, ratio of specific heats;

lit viscosity;

pI density.
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INTRODUCTION

For the vast majority of problems concerning flow of a liquid in a

porous medium, the tluld is considered incompressible (or slightly com-

pressible) and the convective terms are neglected. For most classes of

problems, such as ,..ound water and seepage flow, these assumptions are

not unreasonable, and have been used in investigations of this type [ 1, 2].

When the fluid is a compressible gas subject to large pressure gradients,

such assumptions are no longer valid, and a different methodology must be

applied. The purpose of this, paper is to develop a simple theory for one-

dimensional, compressible flow of a gas through a porous plate.

This work was initially motivated by recent, developments in high speed

reentry technology. In an attempt to simulate ablation off the surface of a

reentry vehicle, Hartunian and Spencer [ 3] introduced the concept of massive

blowing in wind tunnel experiments using models of a porous material such

as sintered stainless steel. A substantial pressure difference, usually greater

than WOO to 1,. is established across the wall of the model. A large mass flow

rate through the wall ensues and appreciable density gradients occur.

Out interest here is the interaction of the injected gas with the porous

material, not the external flow field of the injected and free-stream gases.

In order to concentrate more fully on the physics of this interaction, the

following simplifying assumptions are introduced:

i. Steady, one-dimensional flow is assumed.

2. The physical model of a gas flowing in a straight, frictionless

duct of constant cross section is adopted. Situated in the duct

is a porous plate of uniform thickness (see Fig. i).



3. A perfect gas is assumed with a constant '?aiue for the ratio of

apecific heats.

4. Cor,tinuum mechanics govern th, 1low.

We take as a mathematical model for the viscous flow inside the plate

the formulation applicable to flow in a straight duct with friction. This

description is intended to represent average flow conditions at any cross

section of the plate and does not imply the assumption of a capillary model

in which the pores are straight ducts transverse to the plate. The theory

associated with this approach is well established and widely known. (See,

for example, Shapiro [4], whose work is heavily relied upon here.) We

follow [ 4] and use the Mach number as the independent variable, which yields

a formulation that is physically el'-gant and mathematically simple. An

important result of this approach is that momentum considerations can be

dealt with separately, as has been done in the subsequent analysis.

The distinguishing feature of this analyiis is the generalization of the

Dupuit-Forchheimer relation [ 1, 2], which says that the volumetric flow rate

is constant across the surface of a porous medium. The fluid thus adjusts to

the smaller flow area available to it in the medium. In incompressible flow

theory, this relation is used regardless of whether the fluid is entering or

leaving the medium. By contrast, instead of the Dupuit-Forcl-heimer relation,

we use the isentropic assumption when the fluid is entering the plate. On

exiting, the flow is assumed to adjust to the larger available area by means

of an irreversible process.
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The most important consequence of this analysis is that although the

flow may be choked, the Mach number at the downstream surface is generally

not unity. (By choking we mean that the mass flow rate through the porcus

plate is a maximum. ) Specifically, as the pressure ratio across the plate

decreases, the flow becomes choked, but the downstream Mach number may

still be much smaller than unity. As the pressure ratio further decreases,

the flow remains choked, while the downstream Mach number increases. In

fact, this Mach number will become greater than unity for sufficiently small

pressure ratios. In other words, although the flow through the plate is choked,

a wide range of downstream Mach numbers ranging from subsonic to super-

sonic is nevertheless possible. In addition, a limiting pressure ratio and

Mach number exist beyond which solutions are no longer possible according

to this theory.

Results of this work can be given as a plot of upstream Mach rumber

versus the pressure ratio across the plate. This is equivalent, for the com-

pressible case, to the normal incompressible relation of the volumetric flow

rate versus the pressure differential across the plate. The incompressible

result can also be shown on our plot; it differs from the compressible one,

except when all Mach numbers, are small or when the plate is thick (see

below).

We formulate the problem in the following section. The case when

choking does not occur is analyzed first. Momentum considerations are

dealt with in a separate section and the validity of Darcy's equation for

-3-



bo'i isothermal and adiabatic flow through the plate is discussed. The

subsequent section treats the choked-flow case, while the final section

discusses a number of important aspects of the theory, including the gener-

alization of the plot of flow rate versus pressure differential.

I



FORMU LATION

Consider one-dimensional flow of a perfect gas through a plate of

uniform porosity P (see Fig. 1). The cross-sectional area of the plate is

taken to be unity, consequently, the area available to the flow within the plate

is P3, which must be less than unity. A streamtube of fluid thus contracts in

area as it enters the plate and expands in area as it leaves. These changes

are assumed to occur between locations L and 2, and 3 and 4, respectively.

Both area changes are assumed to occur in a short distance in comparison to

the plate's thickness.

Upstream of the plate, the flow is at a low subsonic Mach number,

i.e., < i, given by

2 RT2
'l2 RT(PIu1 ) (1)I y(Fp'/p) Z

YpI

where u is velocity, . is the (constant) ratio of specific heats, p is pressure,

p is density, P is the gas constant, and T is temperature. Because M << i,

the thermodynamic quantities in equation (1) differ negligibly from their

stagnation values. Similarly, in all ensuing formulas we use without further

statement or justification the approxirnat.Len

At Between locations i and 2 we assume the area change is accomplished

( I by means of an sentropic process; the flow is thus analogous to that in the

convergent part of a nozzle. Associated with t' e flow is a small loss of



stagnation pressure, but this loss is minute compared with that between

locations 2 and 3 and therefore is neglected.

Between location. 2 and 3 we assume the flow is adiabatic but non-

isentropic dute to viscous-energy dissipation. Flow conditions are described

by a Fan-no curve, which combines the adiabatic assumption with continuity.

Such a curve (4] is independent not only of the form of the drag term in the

momentum equation, but of the momentum equation itself. This is an

i nportant point to bear in mind, since much of the analysis deals with

properties of the Fanno curve, and is thus valid for any momentum equation.

One of the fundamental properties of a Fanno curve is that at the "nose"

(see Fig. 2) the entropy is a maximum and the Mach number is unity.

Associated with this is the phenomenon of choking. Specifically, when M2 < I,

as is the case here, we have the condition M 3 : 1, which plays an important

role in the subsequent analysis.

Between 3 and 4 we assume the area change is accomplished by a sudden

enlargement, which is a non-isentropic process. When M 3 < 1, this is a

coripression, i. e., an increasing pressure, which results in a lower Mach

number at 4 than at 3. When M3 is near unity and P is small, an entropy

We could also assume the flow between 2 and 3 to be isothermal. However,
[4] (Chapter 6) shows that both assumptions yield similar results qualitatively

and quantitatively. For experiments of long duration involving flow through

a thin plate, we adopt the adiabatic assumption as the more realistic one.

1



increase occurs which cannot be neglected. Since this case is important, we

ase the more exact irreversible process throughout the analysis, even though

an isentropic process would otherwise be feasible when M3 < 1.

These considerations are conveniently illustrated by a Molier diagram

(Fig. 2). The ordinate is the enthalpy h, where h0 , the stagnation enthalpy,

is constant from I to 4, since the entire process is adiabatic. Locations 1,

2, 3, and 4 are state points on the diagram and hereafter are so designated.

States I and" ire connected by a Fanno curve, since these states have

the same mass flux rate and h This curve is to the right of the curve pass-

ing through 2 and 3 because of the smaller mass flux per unit area. In the

P = I limit, both curves coincide; as P decreases from unity they diverge.

In Fig. 2, flow conditions between I and 2 are given by an isentropic subsonic

expansion, flow conditions between 2 and 3 are given by the Fanno curve, while

the irreversible subsonic compression occurs between 3 and 4.

Figure 2 and the process between states 3 and 4 are valid when M3 < I

and in the limit M 3 -I. When M3 = I, the flow chokes and the analysis must

be altered to allow for other solutions in addition to the M 3 -- 1 limit. We

shall first consider the M 3 < I case, along with the limit M 3 - I.

~If



M < i AND M I ANALYSIS

States I and 4 are related by the Fanno curve [4]

Pi GO (M2 (2a)

where

Go(M 2) M2 [I + (-y - i) M2/2].

States I and 2 are isentropically related by [4]

M 2 = P2 2GjM , (2b)

G I (M2 ) _ M2

[1 + (y - 1) M2/2

States 3 and4are related by the momentum equation for a sudden enlarge-

ment from an area P to unit area. This equation it (see [4], problem 5. 23)

2 2u) P3 + ()(P3 + P3 u) (P4 + P4 u4) (3)



* which is valid only when M3 < 1, or in the .limrit Iie.1 Bytnieinui .-oithe

isentropic relation for P./pi and the ranno 6urve6 rblatdon..Ioe ~P

equation (3) can be written as

3 (Zc)

The three equationzs (2) relate four- Mach numbbr s and, c-o secjuentlV an

additional relation is necessary. This is pr6vld-ed. byco"nser~vation ofimomen-

tum, between states 2 and 3, which is given latier.

A more convenient form for equation (2c), obtained with the aid of

(2a) and (2b), is

2i 4 3 32(4
U+ y- 1M/2 ~) + Y- (PM ) /

We deduce from this thatM' 42 P rom equatioh (3) we have

P4  i+ Y, 3)()
P3 I+ Y.2,

t M 4

and consequently P3 5 P4 .

-9-



Si .Asecondbou 'on'M, moreuseful than the one above, is obtained

from eqgatgon:-(4 ad the,'co~dition M < 1. and is

where

2 GO(M)
G2 (M).2.

(I +YMZ)

+.Figure 3 is a plot of the Gi(M 2) versus M 2 for y = (7/5). Thus, M4 is

bounded, where this bound, M4 , is obtained from (6) by replacing the

inequality by an equality - ign. Figuire 4 shows M, versus P for y = (7/5).
" / I2

From equation (2a) and inequality (6), we see that (PiM1 /p 4 ) also

2 -2has an upper bound, (pMA/p 4 ) , which is shown as a function of Mj in Fig. 5

for y = (7/5). For a given value of P there is a maximum value R2 (Fig. 4),

which in turn leads to a maximum value Ad 51 I ) n the liit

1M3  1, we have M4 = M and (PAM 1/P 4 ) = (PIMI/P 4 ). When 1,

however, other solutions, which are discussed later, are also possible.

It is clear from Fig. 4 that M4 will be small when P is small. Suppose

both M, and M4 are small. This does not imply that the flow is incompressible,

since M3 may still be near unity. Figure 4 further shows (when M3 < ) that

large values of M4 cannot be attained for many porous media, since P is usually

usually less than 0. 6.

-to-



In the limit when all Mach numbers are small, we obtain from

equations (2) the simple result

=i AM2  P(IN)M 3 =(P) 4 4 (7)

which is used later.



MOM E NTUM

o ;Tw o-going analysis is completely independent of the momentum

equatltzpOlcble between states 2 and 3. For compressible flow, this

eqatioan-.an be -writen as ,(see f4], Chapter 8)

dp + dX -pu du . (8)

The drag term in

dX bpu , (9)

where x is distance in the direction of flow, and b is a drag coefficient with

dimensions (length) , considered constant when any integration with respect

to x is performed. Equation (9) is identical to that used in [41 'Chapter 6).

with b = (4f/D), and was chosen, in part, for this reason. A comparison with

Darcy'z law (as given, for instance, in (2], p. 2) shows that b = (Zr/puB0),

where B, is Darcyle constant and n is the viscosity of the gas. A more

detailed discussion of the physical implications of the drag coefficient is given

in the last sertion.

The isothermal Case

Darcys acuation is universally used as the momentum equation for

incompressible flow in a porous mediumx. Although we are pr.'marily interested

in adibatic flow, it is awoful to consider the isothermal case in order to show

the relationahi. of Darrcyla Pquation to the pro-:!, .'ork. We begin by pre-

senting the tsaa] d -tlon of Darcy's equation for isothermal flow, neglecting



the convective term pu du. We then present a more precise derivation,

which retains the convective term and shows that Darcy's equation is not

uniformly valid in the incompressible limit. Nevertheless, it is also shown

that Darcy's equation usually differs negligibly from the correct momentum

equation. As we shall see later, the same type of nonuniformity appears in

the adiabatic case.

Consider the isothermal case neglecting pu du and the area changes at

the plate's surfaces. The area changes are included when the adiabatic case

is analyzed. We therefore obtain

p dp =-bppu 2 dx =-bRT(piu,) dzx

and by integrating between I and 4, we obtain Darcy's equation

2 2
P1 - P4  £ - (P 4 /P 1 )2bL - -,(10a)

RT 1 (Piu1  YM1

where L is the thickness of the plate, and where equation (1) is used to obtain

the second equality. The only alteration that the neglected area changes make

2is to introduce a P factor on the right side of equation (10&

If we now retain the pu du term, and still assume isothex.ral flow, we

obtain (see [4], Chapter 6)

bL = 
Z 1 J

Y | Y4



I1

By means of an equation for M4 similar t,' (t), this becomes

I - (P4 /P() 2 lob)
bL -- 2 - +- In (p4/pd)

which differs from (1Oa) by the logarithm term. Because of this term, Darcy's

equation is not a uniformly valid approximation in the incompressible limit.

(In this limit, we replace M 2 by equation ().) Figure 6 shows, however,

that the absolute value of the logarithm term is small compared to the value

of the right side of (i0a), except for exceedingly small values of (p4 /p 1 )2

when compressibility should not be neglected in any case.

The Adiabatic Case

Next, consider adiabatic flow from states 2 to 3, and in parallel to the

preceding case, examine first equation (8) without the pu du term. This

equation can be written as

b +x i M I dMx

which becomes on integration

M 2,1 + (, i)MZ/a

M y 3  2, I

For small Mach numbers, this can be written as (see equations (7))

(p/P) 2  2

bL.2 (ln(P4 /P
IZ



This equation differs from (iOa) by the 2 coefficient, which ii due to the

area changes, and by the logarithm term. Again, this term is small com-

pared to the P2 term, except at small pressure ratios. Henceforth, we refer

to equation (12), without the logarithm term, as Darcy's equation.

When the pu du term is retained, we obtain in place of equation (it)

(see [4], Chapter 6)

where f

which is shown in Fig. 7 for y = (7/5). For comparative purposes, this figure
2 2

also shows i/yM , which closely approximates F for small M 2 . For small

Mach numbers, equation (13) becomes

bL = 2 1 - (P 4 /P1 )2 + YZ_b P--.--+ (Y-j,) !(p 4 /p)Z (15)

YM1

which again differs from Darcy's equation by the logarithm term. This

difference is also negligible except at small pressure ratios. It is interest-

ing to note that equations (12) and (15) are Identictal to the isothermal results,

equations (l0b), whan y 1.

Darcy's equation shows that 3 can be absorbed into b in the incom-

2
pres~i'.Ae case. In this case, only one coustant, b/P , characterizes the



gas a.mcid inttactio.. This is not surprising, since [5] develops a theory in

wt ch d pes not ente- e licitly. When compressibility becomes important

this simplification is no longer possible and both b and P are separately

significant parameters.

We have shown that Darcy's equation can be considered as the incom-

pressible limit for both the isothermal and adiabatic cases, providing p 4 /p1

is not too small. An estirnate of a lower limit for P4 /p, denoted by

(P4/Pi)min, can be obtained by assuming the magnitude of the logarithm term

is, say, 1/10 that of the other term. This results in

(p4/pdmin exp )(16)
L10(y + i)M1

where the p,4/pI)2 quantit in the term has been neglected. Fort example,

equation (16) results in (P4/Pidmin = 0,044 when , (7/5), 1 = (/2), and

, Hence, if 0. 044 < fp!p ), Darcy's equation can be us d in place

of equation (15), providing all Mach numbers are small. Equation 116) shows

that small values of;,/M 1 result in values of (p4!Pidmin near unity, in which

case Darcy's equation is no longer useful.

A criterion for the use of incompressible flow theory can now be derived.

In doing so, we approximate F by I/yM 2 and freely use equations (7). Since

.ie largest of the Mach numbers is M3 the flow is considered incompressible

if F(IV) 2t 10 or 3  0. 239 (see Fig. 7). From equation (13), we have
3) M3

i I

yM 3  YM2

-16-



which, after some manipulation, results in

( 2 2

> (P4  (P4/linc - T + (bL/1O)

The flow is thus approximately incompressible if (P4 /P1 ) is greater than

(p4/Pl)inc. This result should not be confused with (16), which concerns

the relative importance of the logarithm term in equation (15).

The Compressible Momentum Equation

In the remainder of this paper, we deal only with the compressible,

adiabatic result, equation (13). This equation, in conjunction with equa-

tions (2), shows that

bL = f0 (Ml2, , y, P 4 /P) (18)

An important conclusion based on equations (1) and (18) is that for given values

of P' y, p4 /p1 , and plp,, the mass flow rate plu1 adjusts to conserve

momentum. Any change in the flow rate through a plate thus requires a new

p4 /p1 . For fixed values of P, y, and p4 /PI, an alternative interpretation is

that momentum conservation relates M2 and bL. In fact, this relation is

single-valued as shown in the Appendix.

As no d earlier, the two Fanno curves coincide when L = i. We

therefore obtain the relation

i- = F(M2) - F(M-)

A -17-



It is important, however, to note that

11-. bL # F( 'I - IF(M (19)

when:- < 1, since erroneous results are obtained if the two area changes are

ignored. (Compare this with equation (13).) To demonstrate this more

clearly, -we determine

____ f d+,.2) BM2 dF(M2) 82

8(bL) 0_ ___ 2 __ 3 3
8P -O M2 8P3 d 2 8P3

where conditions at I and 4 are held fixed. We obtain

M 2I (Y I-Yi3 )MJ}

which is always positive. If instead, (8bL/8p) had been zero, f0 would not

depend on P and an equality sign in (19) would be correct. Thus, the area

changes cannot be ignored when dealing with conservation of momentum.

This is also evident from te fact that the average Mach number on the Fanno

curve from 2 to 3 is greater than that on the Fanno curve from 1 to 4. The

positive value nf (8bL/8p) means the product bL must increase if P increases,

in order to maintain constant conditions at I and 4.

-18-



2 4 2
We conclude this section by examining the limit M 3  with M

and (p 1M 1 /P 4 ) = (piM1 /P 4 )2. In this situation,

bL =f,(M~/ 2 y) =F(M?-) - F(i) ,(20).

as is evident from equations (2b), (13), and (14). This result is shown as

Fig. 8 for y = (7/5). Hence, for given values of y (e. g., 7/5), P, and p4 /pi we

-2can determine bL such that M3 = 1. To do this, first determine M 4 by

Fig. 4, then (P1 M 1 P4 )2 by Fig. 5, and finally bL by Fig. 8.

We may, of course, specify y, P, and bL and then determine a value

for p4 /p,, denoted in accordance with our notation by (p4 7p), such that

22
= 1Fiue9sosp/p)versus bL for y = (7/5) and various values

of P including P = 1. Values of p4 /p, greater than (p 4- 1 ) result in M 3 < 1;

values less than (p4 /p,) are considered in the next section. All the curves
in Fig. 9 are parallel because (M 22= g, where g is a function

only of P and y. The solid curve is for both P = 0 and 1 1. As P increases,

(p 4 p-l) at first increases, reaches a maximum at about 0. 6, and then

decreases to the f = I value. This behavior can be shown to be due to the

curvature of the path that represents the 3 to 4 process, as shown in Fig. 2.

The process twice intersects some constant pressure lines, thereby resulting
a double-valued behavior for (p4 _i). Since the curves are so close together,

the pressure ratio for choking, (p4-pl), is insensitive to p.

K1  -19-
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~jFinally, for large bL, i.e.. for a thick plae we have approximately

22

and hence lnp 1 ) iv- proportional to lIn bL, as is evident from Fig. 9.

Note that bL at (P IyM1) in essentially Darcy's equation when P41 isaU

-20-



CHOKED FLOW: M I.

When (p 4 /pj) <( 1 ), equations (,2c), (3), (4) a.d (5).no longer apply,

and state 4 cannot be directly related to state 3 as before. These equations

are replaced by M 3 = 1, and conditions at 1, 2, and 3 are unaffected by

changes in p4 . Since conditions at I and 2, as determined by equations (2b)

and (20), are fixed, we concentrate on conditions at 4, where M 4 is

determined by equation (2a).

The analysis is again conveniently illustrated by a Mollier diagram

(Fig. 0). State points 1, 2, and 3 are the same as in Fig. 2, except that

3 is at the "nose" of the Fanno curve. The limit M3 -. 1, is shown as 4. For

pressure ratios slightly less than (p 4 p1 ), state 4 is to the right of 4 on the

F nno curve through state I. State 4 thus moves in a continuous manner

ail ni the Faino curve as IP4 1 decreases.

lIf P4 is further decreased, state 4 is at the "nose" of the curve where

M =1, and the corresponding pressure ratio is designated by (p4 /p) . A

fu her decrease in p4 /p, results in supersonic flow, since M4 > I. For a

suf iciently small pressure ratio, denoted by (P4 p1 ), conditions at 4 are

rea hed by an isentropic expansion from 3 to 4, as sho- in Fig. 10.

Solu ions do not exist for pressure' ratios smaller than (p4 /pi), which is

refe red to as the limiting pressure ratio. This limit results from our

2 Thi limiting pressure ratio probably cannot be attained in practice due to

the e ects of turbulence downstream of the plate. A smaller downstream

reser oir pressure than the limiting one should result in a flow at the end of

the du t analogous to the flow external to an underexpanded nozzle.
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V

intstando on a- con tant-area duct. A st~IM pem . tio, for example,I i'qirsanepadg o and an 5.nczt.sing duct cresa- sectional area

downstwea?Wof -the platev

-i hou~d:be realized that the flow mayb. quit..turbulent downstream

6f the ~plate* 'In thfis situation, state 4 does nat o.(cir unti' a,~ uniform duct

flow is achieved. Thus, state 4 is frequently downrtream of the plate rather

than at its surface.

Conditions at 4, when

are determined by combining equations (a, (2b), and (13) to yield

Thus, 1) 1Y[' + 2(y - ")(PI /P4~ 21()] - Zb

Thu , M4depends only on y, bL, and (pi/pt4 ). The pressure ratio (4P

as a function of bL, y, and IP, is obtained by setting M 4 = 1. Figure 9 shows

[(p4 /pi)*] 2versus bL for y = (7/5) and varionie P 2, -including P=1. As with

(p~p-),these curves are also parallel. One difference, however, is that

decreasing P results in a smaller (P4 /Pd)* for a fixed bL. This is evident

once it is realized that decreasing P separaten the Fanno curves, while a

constant bL, means that the Fanno curve through 2 is kept fixed.
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The Mach number M at the limiting pressure ratio is determined by

the isentropic relation

Y= /1 + j)](Y+l)/(Y' ) P -
ilA

where equations (21) still apply. These may be solved for (p4 /pi,)t: which is

also shown in Fig. 9 for y = (7/5) and various 2 including = , The

variation of (p4 /pi) with P is much greater than for the other pressure ratios

shown in Fig. 9. We also see that all the curves are again parallel.

Basically, this occurs because the same momentum equation (13) and Fanno

curve equation (2a) apply to all the curves.

~: i
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DISCUSSION

Three prliiclpaI topics are discuosed in this section, all of which bear

on experimental verification. First, the various flow regimea are described

in terms bf the pressure ratio. An apptopr ate generalization of the volumetric

flow rate versus pressure differential plot i then given. The third topic is

a diicussiOn-of the physical implications of the drag coefficient b.
/

"There are four flow regimes that can be characterized by the pressure

ratio P4 /P. The first is

(p4/Ptdinc _< (p,4/pd) -S

where (P4/pi)inc is given by equation (17). This is the incompressible regime

where Darcy's equation is usually valid. The next regime

t ---7" '4 /P ) p4/Pi)inc

is characterized by compressible subsonic flow everywhere. The third

regime

(p4/pi)* :5 (p4 /p) < (p- )

requires a choked flow, with subsonic flow at 4. The final regime

(p4/Pil :5 (P4/Pi) < (p4/pd)*

also requires a choked ilow, with supersonic flow downstream of the plate.

Of the four reginmes, there can be no doubt about the characteristics of the first.
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The others still require experimental verificati/a. This it- particularly

true of the last, since supersonic flow has not, as yet, been associated

with flow through a porous medium. his- regime may be the, easiest to

verify, however, since standard techniques, such as the Schlierehoptical

method, can be used to detect the presence of supersonic flow downstream

of the plate.

Incompressible flow through a porous medium isofrequently represented

by a linear relation between the volumetric flow rate and the pressure.diff-

ferential. This representation does not hold for compressible flowi. More
2 1 1i2

appropriate would be a plot of M versus (YA/Pt) 2 as shown in Fig. Ii.

(Once M I and (p4 /PI) are known, MV4 is readily determined by equation (2a).)

This figure is for P = 0. 2, y = (7/5), and vaerous bL. The solid curves

are for compressible flow, where the (4) denotes the pressure ratio

( 4/Pi~inc, and the (o) denotes the onset of choking. These curves terminate
at (p4 /Pi). The dashed line is the incompressible result, equation (15), while

the doubly dashed line is Darcy's equation, which differs from (15) when

(P4 /"Pi) (P4/Pimin. This difference shifts to smaller pressure ratios as

bL increases in accordance with (16).

For bL equal to I and £0, we see that the compressible and incompres-

sible results depart at (p4/Pi)inc . For bL equal to i02 and (p4 /pi) < 0. 1,

only small changes in M2 are necessary for large changes in M3 and p4 /Pt.

Since this is true for both the incompressible and .,,npressible zesults, the

two remain quite close. For a thick plate, i. e., large bL, Darcy'r equation
22adequately predicts M1 versus (p 4 /pl) , as noted earlier. The incompressible

solution does not, of course, correctly predict M 4 or (p4 /Pl).



;Jxpiximental data will not ne-cessarily follow a single bL curve Ls flow

conditioi vary. Deviations occur because b generally varies with flow

conditlons# It, is therefore necessary to explore the relationship of b to the

otheriatiineters of the problem, since experimental verification iiepends to

some extent on this relationship.

Any experimental investigation must deal with at least three types of

parameters. The first are those that characterize the gas, such as y and

the viscosity. The second are those that characterize the porous medium,

such as P. Finally, theie are parameters associated with the specific flow

situation, such as pIui. All parameters used so far, except b, have a

s ,aightforward physical interpretation and are experimentally determinable.

Part of the difficulty with b is that it depends on the gas, porous medium,

and flow conditions. This iS evident from the relation b = (2i/puB0 ) given

earlier.

The drag coefficient was introduced with the expectation that it is

independent of 1, which must be specified as well. In addition, it is reasonable

to expect that b does not depend on the molecular weight of the gas or on y.

The first exclusion stems from dimensional analysis, while the second is due

to the explicit appearance of y in the theory. In order to define more clearly

the role of b, we proceed by comparing the flow in a porous medium with that

in a pipe with roughened walls. This type of comparison is subject to

criticism, as [ i I points out, and our conclusions are, at best, heuristic.

We nevertheless briefly pursue this course in order to introduce concepts

that may be experimentally useful.



r

According to this analogy, b should depend on some average pore

diameter d (or equivalently on the specific surface), and on the Reynolds

number Rd = (piuld/il). Thus, b = (2d/B 0 Rd ) and if d/B 0 is constant, b is

inversely proportional to the Reynolds number, a result typical of laminar

flows. For sufficiently large v4lue of Rd' however, due to turbulence,

d/B 0 is not necessarily constant. The drag coefficient may also depend on

the Mach number, although this dependence is believed to be weak (see

(41, Chapter 6). For a specific medium, b may also change with time due

to surface changes such as adsorption. In addition, b may depend strongly

on certain characteristics of the material, such as te relative roughness

(see [41, Chapter 6).' For sufficiently large flow rates, the flow is not only

turbulent, but b may be nearly independent of Rd. In this circumstance, b

depends primarily on the relative roughness alone. This regime is ideal for

experimentally verifying this analysis, providing it occurs before the flow

chokes.

Even if b does not have precisely the behavior described above, experi-

mental verification is still pos3ible. For example, use can be made of the

fact that once choking has occurred, the flow from 2 to 3 does not change
3

and bL remains constant. Furthermore, in the compressible regime when

S 3 < 1, problems associated with b might be avoided by using different plate

thicknesses of the same porous material. For engineering purposes, plots of b

versus the pertinent parameters, such as Rd , are of course neces.ary.

3 We are, of course, allowing only P4 to vary.



In conclusion, note that although we have dealt exclusively with the
pressure and Mach number, other quantities are easily determined. For
example, the temperature at 4 is known for all flow situations from

since the stagnation temperature, &pproximately given by Ti , is a constant.

Another useful quantity is the stagnation pressure p0 . At I this is approxi-

mately equal to p,, but at 4 it is

P0 4
= [ i + ,-I)M z /

P4 
4

and consequently, (p4 p) < (P0 4 /P0 I). This difference in static and stagna-

tion pressure ratios is not necessarily small, e. g., with y = (7/5) and

M4  iwe have (P0 4 /Po) = 1.892 (p4 /Pl).

iI

I
I
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APPENDIX

I (8bL/OM,) is non-zero, then bL and M are uniquely related. This

derivative is (see equation (18)]

afo dr(m4) 8m2 dF(m2) am- 8M2
M )== = r 2 2 3M 4M
aem dM 2  amI dm 3  am4aj

2/M

where the derivatives, such as (aM /Mi2 ), are determined by equations (2)

and (4). We thus obtain

8(bL) H
M2 2

YMI

where

t -') ( + YM 2 (I + M)
3 1 (-y - Y )M A I, + M 1 i + ( i)M ~

and M2 and M2 are related by equation (4). It is easy to see that H(O) = I and

H(i) = 0. One can also show that (dH/dM') 5 0 for0-5 M3 5' ConSequently,

H 5 1 and since M2 < M3 , we have (bL/aM < 0, andbL and M i are uniquely

related. Furthermore, since bL/8M2) is negative, increasing M2 means

bL must deprease if p4 /P1 is to remain constant. In other words, we get

the result that if the pressure ratio p4 /P is to remain constant as the mass

flow rate is increased, the dimensionless product (bL) must decrease.
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